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Abstract

This trial was designed to evaluate the off-label use of ceftiofur with Marek’s vaccine in one-

day-old broiler chicks, a prophylactic treatment that has been done in some commercial

hatcheries, on the emergence of extended-spectrum beta-lactamase producing Escherichia

coli (ESBL-E. coli). A total of 168 chicks (Cobb500®) were used in a completely randomized

design. Birds were assigned to two treatments (Marek’s vaccine plus saline vs Marek’s vac-

cine plus ceftiofur) and six repetitions, with 14 animals each. Cloacal swabs were collected

from 1 to 14 days post-hatch. The majority (86%; p<0.0001) of the ESBL-producing isolates

harboring blaCTX-M and blaSHV genes originated from animals receiving the antimicrobial.

None of the isolates were positive for plasmid-mediated AmpC betalactamase genes

(blaACC, blaCMY-2, blaDHA, blaFOX, blaMOX and blaMIR). These findings indicate that the off-

label use of ceftiofur with Marek’s vaccine is associated with the short-term increase in

ESBL-producing Escherichia coli in the gut of chicks.

Introduction

The non-therapeutic use of antimicrobial drugs in farm animals is a common practice for dis-

ease control and prevention, or to enhance performance. Previous reports demonstrated the

link between the off-label antibiotic use of antimicrobials in animals and the increase in anti-

microbial resistance [1,2]. Third-generation cephalosporins are among the highest priority

critically important antimicrobials to human health [3] and their indiscriminate use is of great

concern to public health.

Ceftiofur is commonly administered to day-one chicks together with Marek’s vaccine in

certain commercial hatcheries to prevent disease in broilers [4]. Use of ceftiofur in poultry pro-

duction has been responsible for the increase of resistant E. coli and Salmonella Heidelberg
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isolates in Canada [5]. The use of ceftiofur has also been reported to be related to the increase

of the blaCTX-M gene in E. coli isolates from swine and cattle fecal samples [6]. The potential

spread of resistant isolates of E. coli or even their encoding plasmids through direct contact or

ingestion of contaminated food pose a worrying public health risk. The objective of this study

was to experimentally investigate the effects of the administration of ceftiofur together with

Marek’s vaccine in one-day-old chicks on the emergence of extended-spectrum beta-lacta-

mases (ESBL) producing Escherichia coli (E. coli) in the gut.

Materials and methods

The experimental proposal was submitted and approved by the Ethics Committee on Animal

Use of the Federal University of Paraiba (CEUA/UFPB). Two hundred fertile eggs were

obtained from a commercial hatchery (Guaraves Alimentos Ltda, Guarabira, PB, Brazil), origi-

nated from Cobb500 breeders with 44 weeks of age. They were placed in egg incubators with

standard temperature (37.7˚C) and humidity (60%) conditions and automatic turning at each

two hours. After hatch, a total of 168 chicks were weighed individually (mean weight

47.0 ± 0.5g) and used in a completely randomized design with two treatments and six repeti-

tions, with 14 animals per repetition. The chicks were kept into boxes (50 x 50 x 50 cm). Each

box was equipped with feeder and drinker and was covered with nylon to avoid contamination

between boxes by vectors such as flies. Thermo-hygrometers (Oregon Scientific, Portland,

EUA) were used to monitor temperature and relative humidity in the room.

A corn-soybean meal diet was formulated for the initial phase with the following levels:

22.2% crude protein, 2,950 kcal of metabolizable energy/kg of diet, 1.31% digestible lysine,

0.94% digestible methionine + cystine and 0.852% digestible threonine. Animals in the control

group (CG) were administered 0.2 mL of Marek’s vaccine suspended in sterile saline solution

subcutaneously, whereas the animals in the antimicrobial-administered group (AG) received

0.2 mL of Marek’s vaccine suspended in sterile ceftiofur solution (0.2 mg ceftiofur sodium).

Cloacal swabs were randomly collected from two animals per repetition before vaccination

(day 0) and at 3, 5, 7, 9, 11 and 14 days post-hatching. After swab collection the animals were

euthanized. The swabs were placed into Luria-Bertani broth (Himedia, India) supplemented

with ceftiofur (2mg/L) and incubated at 37˚C for 24 h. Then, a 20μL aliquot was spread onto

MacConkey Agar (Acumedia, EUA) supplemented with ceftiofur (2mg/L) and incubated at

37˚C for 24 h. Lactose fermenting colonies (four per plate) showing characteristics of E. coli
were transferred to Eosin Methylene Blue Agar (EMB) (Himedia, India) and further con-

firmed as E. coli by the following biochemical tests: Triple Sugar Iron Agar (TSI) (Himedia,

India), Lysine Iron Agar (LIA) (Himedia, India), Sulfide Indole Motility (SIM) (Acumedia,

EUA), Simmons Citrate Agar (Oxoid, UK) and Urea Agar Base (Oxoid, UK).

The Clinical Laboratory Standards Institute (CLSI) disk diffusion method [7] was used to

test E. coli- confirmed colonies for antimicrobial susceptibility to the following drugs: amoxi-

cillin/clavulanate (Amx/Clv, 20/10 μg, Cecon, São Paulo, Brazil), aztreonam (ATM, 30 μg,

Cecon) cefotaxime (CTX, 30 μg, Cecon), ceftazidime (CAZ, 30 μg, Cecon), ceftriaxone (CRO,

30 μg, Cecon), ciprofloxacin (CIP, 5 μg, Cecon), chloramphenicol (C, 30 μg, Cecon), gentami-

cin (GM, 10 μg, Cecon), sulfisoxazole / trimethoprim (SXT, 23.75 / 1.25 μg, Cecon) and tetra-

cycline (Te, 30 μg, Cecon).

From each plate, all isolates showing different resistance patterns were taken for further

confirmation, therefore, in some cases more than one isolate was recovered per sample (bird).

We also determined the minimum inhibitory concentration (MIC) of ceftiofur (CTF) by the

broth microdilution method [7] using 96-well microtiter plates containing final ceftiofur
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concentrations ranging from 0.5 μg/mL to 256 μg/mL. CLSI [7] criteria were used to interpret

MIC results as susceptible (MIC�2 mg/L), intermediate (4 mg/L), or resistant (�8 mg/L).

Phenotypic ESBL detection was carried out by double-disk synergy test using CTX, CAZ

and CRO disks placed at a distance of 20 mm concentrically to the Amx/Clv disk [7]. E. coli
isolates were also tested by PCR targeting the ESBL genes (blaCTX-M, blaCTX-M-1, blaCTX-M-2,

blaCTX-M-8 and blaSHV) as well as plasmid-mediated AmpC genes (blaACC, blaCMY-2, blaDHA,

blaFOX, blaMOX and blaMIR), using primer sequences and conditions as previously described

[8–11] and DNA extracted by phenol/chloroform/isoamyl-alcohol (25:24:1) as described by

Fritsch et al. [12]. Afterwards, the DNA extracted from confirmed ESBL-producing E. coli was

adjusted to 50 ng/ μL using a microvolume spectrometer (Colibri, Titertek Berthold, Ger-

many) and Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR) was used as

genotyping method, as previously described [13]. Shortly, reactions were performed in 25 μL

containing 1 pmol of primer, 200 mM of each dNTP, 3 mM of MgCl2, 100 ng of genomic

DNA, and 1U of Taq DNA polymerase (Invitrogen, Brazil). Amplification was performed in a

thermal cycler (TPersonal Thermocycler, Biometra, Germany). Products were analyzed by

electrophoresis in 2% agarose gel (LGC Biotechnology, Brazil) stained with GelRed (Biotium,

USA). The presence or absence of bands was analyzed visually under ultraviolet light.

ERIC-PCR band patterns were scanned and analyzed using the Dice product moment correla-

tion coefficient (2% tolerance) by BioNumerics software (Version 7.1, Applied Maths, Bel-

gium). Clustering analysis was carried out by the unweighted pair group method with

arithmetic averages (UPGMA). E. coli ATCC 25922 was used as internal control (outgroup).

Details on the DNA extraction and PCR protocols that were used in this study are described in

the Supplementary material (S1 Text and S1 Table). The discriminatory power (D-value) was

calculated as described by Hunter [14].

Fisher’s exact test at 5% probability was used to compare the overall frequency of pheno-

typic ESBL-E. coli isolates between control group (CG) and antimicrobial-administered group

(AG). A Bayesian binomial logistic regression (BLR) approach with 8,000 repetitions was used

to infer the probability of the ESBL occurrence between the treatment groups along the experi-

mental period. Statistical analyses were performed in R environment [15] using brms package

obtained from CRAN (https://cran.r-project.org/web/packages/brms/index.html)

Results and discussion

A total of 57 ceftiofur-resistant E. coli isolates were obtained and confirmed by means of the

disk-diffusion method. Out of them, 52 (91.2%) were recovered from the AG group in days 5

(10; 17.5%), 7 (12; 21.1%), 9 (9; 15.8%), 11 (7; 12.3%), and 14 (19; 33.3%). Five (8.8%) ceftio-

fur-resistant E. coli were cultured from CG birds; all from the last sampling day (14 days).

According to the antimicrobial susceptibility test, high resistance rates were observed for

CTX (100%), Te (100%), CRO (94.7%), STX (54.4%), ATM (42.1%) and CIP (40.4%), corrobo-

rating previous reports showing increased antimicrobial resistance rates in bacteria from broil-

ers and layers [1] and pigs [16] treated with third generation cephalosporins.

The lowest resistance rates were seen against CAZ (17.5%), Amx/Clv (14%) and GM (8.8%)

(Table 1). All 57 recovered E. coli isolates were resistant to CTF (MIC� 8 μg/mL), 21% (12/

57) of them showing MIC� 128 μg/mL (S3 Table). We observed a perfect agreement between

CFT and CTX resistance. This finding supports a previous report comparing MIC values of

CFT versus other cephalosporins, including CAZ, in 118 E. coli from different food-producing

animals [17]. Therefore, the use of CTX seems to be a successful approach to assess ceftiofur

susceptibility in enterobacteria. That could be of special interest for investigations comparing

antimicrobial resistance between isolates from animal and human sources.
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Based on the antimicrobial susceptibility test, 63.2% (36/57) of all E. coli isolates were resis-

tant to three or more different classes of drugs and therefore considered multidrug resistant

(MDR) (S2 and S3 Tables). A total of 14 isolates (24.6%) showed resistance to more than five

antimicrobial classes.

A total of 24 (42.1%) isolates phenotypically confirmed as ESBL were recovered throughout

the experiment and further investigated by PCR (Table 2). Only 3/24 (12.5%) isolates were

obtained from CG, whereas 21 (87.5%) were recovered from AG. From the positive isolates, 14

(58.3%) harbored the genes blaCTX-M and blaSHV; 12 out of the 14 originated from AG. Only 2

out of 14 ESBL-E. coli recovered from CG harbored those genes. blaCTX-M-1 was the most fre-

quent CTX-M type observed (13/14), whereas only one isolate harbored blaCTXM-8 (1/14). No

blaCTX-M-2 has been detected among the isolates. Similarly to the findings of our study, E. coli
harboring blaCTX-M genes have been shown to be frequently resistant to CTF and CTX but sus-

ceptible to CAZ [18], which is possibly related to the fact that CTX-M β-lactamase cannot

hydrolyze CAZ as efficiently as CTX [19].

The genes blaCTX-M, blaCTX-M-1, blaCTX-M-2, blaCTX-M-8 and blaSHV were not detected in the

33 ceftiofur-resistant E. coli that were phenotypically negative for the double-disk synergy test

for ESBL detection. Furthermore, none of the 57 CFT-resistant E. coli isolates harbored any of

the plasmid-mediated AmpC genes investigated in the present study, including blaCMY-2,

which has been reported in CFT-resistant E. coli from animal origin in different countries

[20–24]. Based on these findings and on the phenotypic results, we assume that the 33 CFT-

resistant isolates could harbor other cephamycinase genes that were not investigated in our

study or maybe a mutation in the chromosomal ampC associated with the hyperproduction of

cephamycinase. This last hypothesis is more probable, as cefoxitin-resistance in E. coli has

been less commonly associated to plasmid-mediated AmpC β-lactamases than to hyperpro-

duction of chromosomal AmpC β-lactamase [25].

Interestingly, distinct genotypic patterns among ESBL-producing E. coli isolates from AG

and CG were observed, indicating that isolates of CG animals emerged from a different

Table 1. Antimicrobial resistance of 57 E. coli cultured from chicks receiving ceftiofur added to Marek’s vaccine

(AG) and chicks receiving the vaccine only (CG). Isolates were recovered from MacConkey agar supplemented with

ceftiofur (2mg / L).

Antimicrobials Frequency of resistance

AG� CG# Total (%)

Amx/Clv (20 / 10 μg) 8 0 8 (14)

ATM (30 μg) 22 2 24 (42.1)

CTX (30 μg) 52 5 57 (100)

CAZ (30 μg) 10 0 10 (17.5)

CRO (30 μg) 49 5 54 (94.7)

CIP (5 μg) 22 1 23 (40.4)

C (30 μg) 19 1 20 (35.1)

GM (10 μg) 5 0 5 (8.8)

SXT (23.75 / 1.25 μg) 29 2 31 (54.4)

Te (30 μg) 52 5 57 (100)

Antimicrobials tested: Amx/Clv = amoxicillin + clavulanate; ATM = aztreonam; CTX = cefotaxime;

CAZ = ceftazidime; CRO = ceftriaxone; CIP = ciprofloxacin; C = chloramphenicol; GM = gentamicin;

SXT = sulfisoxazole + trimethoprim; Te = tetracycline.

� antimicrobial-administered group
# control group

https://doi.org/10.1371/journal.pone.0203158.t001
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population. This finding also indicates that there was no cross-contamination of ESBL-E. coli
from AG to CG animals (Fig 1). The ERIC-PCR showed a D-value of 0.96, indicating that the

test was highly discriminatory.

Our study demonstrated that the off-label administration of a third-generation cephalospo-

rin is associated (p<0.001) with the presence ESBL-producing E. coli in the gut of chicks. The

Bayesian binomial logistic regression indicated that the probability of ESBL-E. coli occurrence

Table 2. Number of animals positive for ESBL-producing E. coli identified phenotypically by the double-disk synergy test.

Sampling daya Experimental groups P�

AG CG AG vs. CG

Positive ESBL-E. coli chicksb MICc Genesd Positive ESBL-E. coli chicks MIC Genes

Day 5 5/12 64–256 blaCTX-M-8; blaSHV 0/12 - - �

Day 7 5/12 16–256 blaCTX-M-1; blaSHV 0/12 - - �

Day 9 2/12 8 blaCTX-M-1; blaSHV 0/12 - - �

Day 11 1/12 16 - 0/12 - - �

Day 14 8/12 32–64 blaCTX-M-1; blaSHV 3/12 64 blaCTX-M-1; blaSHV
�

a No ESBL-E. coli recovered at 0 and 3 days
b Frequency of animals harboring ceftiofur-resistant E. coli
c Range of minimum inhibitory concentration (MIC) of ceftiofur (ug/mL)
d Resistant genes detected by PCR in the isolates

� Significantly different confidence intervals of the predicted probabilities of ESBL E. colli by Bayesian Binomial Logistic Regression analysis.

https://doi.org/10.1371/journal.pone.0203158.t002

Fig 1. ERIC-PCR genotyping of ESBL-E. coli cultured from broiler chick cloacal swabs. Dendrogram showing the genotypic similarities among

ESBL-positive E. coli by means of ERIC-PCR. Key = Identification of isolate; AG = antimicrobial-administered group—0.2mL (2 mg/L) of ceftiofur;

CG = control group—0.2mL of saline solution.

https://doi.org/10.1371/journal.pone.0203158.g001
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was significantly higher in treated chicks at 7 and 14 days compared to the probabilities of

ESBL-E. coli across other experimental days, although significant differences were observed

between AG and CG groups at 5, 7, 9, 11 and 14 days of age (S1 Fig).

Although the clonal spread of ESBL-E. coli to humans through the food chain has not been

demonstrated yet [26], the most common ESBL found in bacteria from chicken meat and

humans, including blood culture specimens, have been shown to be identical [27]. Therefore,

foods contaminated by antimicrobial resistant Enterobacteriaceae become reservoirs of ESBL

genes [26–30] that can be ultimately acquired by pathogenic bacteria, reducing the efficacy of

antimicrobials in veterinary and human medicine. Furthermore, ESBL-producing enterobac-

teria can disseminate among animals and occupationally exposed workers, as recently demon-

strated in swine abattoirs [31].

To our knowledge, this is the first experimental report demonstrating that the common

practice of administering ceftiofur to day-one chicks increases the short-term shedding of

ESBL-producing E. coli. The real impact of that on the spread of antimicrobial resistant bacte-

ria to the food chain, final consumers, and environment needs to be further investigated.
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