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Significance and Impact of the Study: Although antimicrobial resistance represents an increasing threat
to public health globally, information about the emergence and dissemination of antimicrobial resistant
bacteria at the animal–environment interface is scarce. Conjugation is a process in which bacteria can
transfer genes conferring resistance to other bacteria. This is an important phenomenon because genes
are transferred through plasmids that may confer resistance to many antimicrobials at the same time.
Our findings revealed that low concentrations of certain drugs in poultry litter increase conjugation
rates of plasmids containing antimicrobial-resistant genes among Escherichia coli, supporting the impor-
tance of drug stewardship practices for the control of antimicrobial transfer.
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Abstract

Considering that plasmid conjugation is a major driver for the dissemination

of antimicrobial resistance in bacteria, this study aimed to investigate the

effects of residual concentrations of antimicrobial growth promoters (AGPs) in

poultry litter on the frequencies of IncFII-FIB plasmid conjugation among

Escherichia coli organisms. A 2 9 5 factorial trial was performed in vitro, using

two types of litter materials (sugarcane bagasse and wood shavings) and five

treatments of litter: non-treated (CON), herbal alkaloid sanguinarine (SANG),

AGPs monensin (MON), lincomycin (LCM) and virginiamycin (VIR). E. coli

H2332 and E. coli J62 were used as donor and recipient strains, respectively.

The presence of residues of monensin, lincomycin and virginiamycin increased

the frequency of plasmid conjugation among E. coli in both types of litter

materials. On the contrary, sanguinarine significantly reduced the frequency of

conjugation among E. coli in sugarcane bagasse litter. The conjugation

frequencies were significantly higher in wood shavings compared with

sugarcane bagasse only in the presence of AGPs. Considering that the presence

of AGPs in the litter can increase the conjugation of IncFII-FIB plasmids

carrying antimicrobial resistance genes, the real impact of this phenomenon on

the dissemination of antimicrobial resistant bacteria in the poultry production

chain must be investigated.
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Introduction

The emergence of antimicrobial resistant bacteria has

been considered a major threat to the human civilization

(WHO 2017). The epidemiology of antimicrobial resis-

tance is very complex due to the dissemination of resis-

tant bacteria and also antimicrobial resistance genes

(ARGs) in a given environment and among animals and

humans that cohabit this environment (Woolhouse et al.

2015). In this aspect, horizontal mechanisms of gene

transfer among bacteria play a key role in the dissemina-

tion of genes conferring resistance to drugs of various

classes, including highest priority critically important

antimicrobials, such as certain extended spectrum b-
lactams (ESBL) (Fischer et al. 2014; Saliu et al. 2020), car-

bapenems (Pulss et al. 2018) and polymixin (Yin et al.

2017).

Antimicrobial growth promoters (AGPs) are com-

pounds added to the animal feed at subinhibitory concen-

trations in order to enhance animal performance. They

have been used for several decades in animal production

systems, mainly in swine and poultry. However, the posi-

tive association between the use of certain AGPs and the

increase of resistance in human pathogenic bacteria to the

same drug classes has led to restrictions in the use of

AGPs (Dibner and Richards 2005; Aarestrup 2012). While

the use of these compounds has been completely banned

in the European Community since 2006 through Author-

ity Regulation No. 1831/2003 (Castanon 2007; Millet and

Maertens 2011), certain drugs are stil allowed to be used

as AGPs in some countries, such as United States and

Brazil.

A significant amount of AGPs in the feed is not

absorbed in the gut of broiler chickens and are thus elim-

inated to the environment through excreta (Sarmah et al.

2006; Heuer et al. 2011; de Souza et al. 2016). Therefore,

litter is expected to have residual amounts of these antibi-

otics together high bacterial populations, mainly enter-

obacteria such as Escherichia coli, a natural inhabitant of

the animal gut.

Plasmid conjugation is a very common phenomenon in

E. coli (Lopatkin et al. 2017) and primarily serves as a

mechanism accelerating the spread of ARGs in enterobac-

teria (Leungtongkam et al. 2018). For instance, the spread

of ESBL-encoding genes contributes to increased survival

rates of enterobacteria in the gut of infected animals

(Blaak et al. 2015; Dame-Korevaar 2017; Borges et al.

2019), and increased contamination levels of poultry litter

(Heuer et al. 2011).

The understanding of the dynamics of plasmid conju-

gation in animal production systems, such as the poultry

industry, could contribute to the mitigation of antibiotic

resistance through the food chain. Although the exchange

of genetic material among bacteria has been well docu-

mented in different environments, including soil, marine

sediment, seawater, sewage wastewater and activated

sludge (Davison 1999), information on putative factors

affecting plasmid conjugation at the animal–environment

interface is still scarce.

The aim of this study was to investigate the in vitro

effects of low concentrations of AGPs in poultry litter on

the frequency of plasmid conjugation among E. coli. Con-

sidering the increasing use of non-antibiotic feed additives

in broilers in replacement of AGPs, we also investigated

the frequency of plasmid conjugation in littler containing

residual concentrations of sanguinarine, a quaternary ben-

zophenanthridine alkaloid.

Results and discussion

Due to the importance of antimicrobial resistance, studies

on the horizontal transfer of resistance genes have been

increasingly frequent. Here, we tried to elucidate the

influence of both AGPs and quaternary benzophenan-

thridine alkaloid on the frequency of IncFII-FIB plasmid

conjugation. Although other plasmids were not investi-

gated here, we strongly believe that the conjugation phe-

nomenon is valid for other types of plasmids that carry

ARGs. Similar methodologies to this study were applied

with different plasmids (Licht et al. 1999; Johnsen and

Kroer 2007; Alderliesten et al. 2020), which leads us to

suggest that such methodology can be applied to different

types of plasmids with the intent to evaluate their con-

jugative frequency.

According to the enumeration of both total recipient

and transconjugant bacteria on MacConkey agar dishes,

there was no difference in the total recipient E. coli counts

between treatments, except a lower count (P < 0�0001)
on both sugarcane bagasse and wood shavings samples

containing virginiamycin (Table 1).

The fact that the presence of antimicrobials did not

inhibit the growth of recipient E. coli populations in the

samples suggests that our experimental model was valid

in providing appropriate conditions for bacteria mainte-

nance and plasmid conjugation events. This was expected

considering that antimicrobials were added at subin-

hibitory concentrations in the litter (10% of the the rec-

ommended use on animal feed), as previously reported

(Zhao and Drlica 2001; Andersson and Hughes 2014).

The digestive tract is considered the optimal site in

terms of nutrient availability and necessary conditions

enabling cell-to-cell interactions in enterobacteria

(Dumonceaux et al. 2006; Pan and Yu 2014). Interest-

ingly, the conjugation frequencies observed in our study

were higher than those reported in in vitro studies using

gut models, with values ranging from 10�9 to 10�18
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(Card et al. 2017; Saliu et al. 2020). According to our

study, the type of materials used as litter had no direct

effect on the plasmid conjugation frequencies when no

coumpounds were added to the litter (CON) or in the

presence of sanguinarine (SANG). However, the factorial

analysis revealed a significant interaction (P < 0�01)
between the type of material and the treatments. Differ-

ences in conjugation frequencies between sugarcane

bagasse and wood shavings were only observed in the

treatments containg antimicrobial residues. Higher plas-

mid conjugation frequencies were observed among E. coli

in wood shavings compared with sugarcane bagasse

regardless of the type of antimicrobial. A previous study

showed higher plasmid conjugation frequencies in E. coli

in wood shavings compared with sugarcane bagasse, even

in the absence of antibiotics (Saraiva et al. 2020). It might

be possible that the higher moisture retention of sugar-

cane bagasse (Teixeira et al. 2015) might affect the avail-

ability of antibiotic residues in the litter (Benabdeljelil

and Ayachi 1996). Moreover, other factors could also

affect the dynamics of plasmid conjugation. For instance,

pH value is an important parameter affecting the degra-

dation of antimicrobials under different treatment meth-

ods (Bilal et al. 2019; Wang and Zhuan 2019; Reis et al.

2020). Therefore, potential differences in pH values (Teix-

eira et al. 2015) among different litter materials could

affect antimicrobial availability. A limitation of our study

relies on the fact that we have not raised information on

the physicochemical parameters of both types of litter.

However, pH values that could potencially affect plasmid

conjugation are far from those commonly observed in

poultry litter under field conditions. Therefore, pH prob-

ably does not play a significant role in our study.

The presence of monensin (MON), lincomicyn (LCM)

and virginiamycin (VIR) in the litter increased the pres-

ence of transconjugant bacteria (Table 1), corroborating

previous reports showing that antimicrobial residues can

indeed favour plasmid conjugation (Barr et al. 1986;

Zatyka and Thomas 1998, Beaber et al. 2004). Although

the mechanisms behind the modulation of conjugation

Table 1 Enumeration (Log CFU g-1) of recipient and transconjugant Escherichia coli in an in vitro conjugation assay using two plain poultry litter

materials (sugarcane bagasse and wood shavings) added with sanguinarine or antimicrobial growth promoters at low concentrations (10% of the

recommended use on animal feed)

Recipient E. coli counts (Log CFU g�1)†

Treatment

Litter material (l)

Treatment meansSugarcane bagasse Wood shavings

CON 8�58405 � 0�078ªB 8�54435 � 0�035ªB 8�564
SANG 8�59325 � 0�062ªB 8�53166 � 0�060aB 8�562
MON 8�52642 � 0�048ªB 8�50298 � 0�059aB 8�515
LCM 8�49866 � 0�065ªB 8�56780 � 0�168aB 8�533
VIR 7�87456 � 0�096bA 7�7480 � 0�0398aA 7�811
Litter means 8�415 8�378
P-value‡ T < 0�0001 L = 0�0060 T * L = 0�0002

Transconjugant E. coli counts (Log CFU g�1)†

Treatment

Litter material (l)

Treatment meansSugarcane bagasse Wood shavings

CON 4�44234 � 0�054aA 4�58508 � 0�121aA 4�514
SANG 4�31842 � 0�080aA 4�57993 � 0�196bA 4�449
MON 5�11039 � 0�049aB 5�17033 � 0�059aB 4�140
LCM 5�55787 � 0�160aC 5�75945 � 0�168bC 5�659
VIR 5�51298 � 0�121aC 5�72395 � 0�040aC 5�618
Litter means 4�988 5�164
P-value‡ T < 0�0001 L < 0�0001 T * L = 0�0193

CON: control; SANG: sanguinarine (30 mg g�1); MON: monensin (10 mg g�1); LCM: lincomycin (1 mg g�1); VIR: virginiamycin (1 mg g�1); CFU:

colony forming units.

Within each bacterial count, different capital letters in the column are different, and different lowercase letters in the row are different by the

two-way ANOVA with a Bonferroni multiple comparison test at 1% probability.

†Each value represents mean � standard deviation of 15 observations

‡T = Treatment; L = Litter material; T * L = Interaction between main factors (treatment and litter material).
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efficiency are still unclear (Zatyka and Thomas 1998;

Lopatkin et al. 2016a, 2016b), our findings support the

hypothesis that an acquired genetic framework for antimi-

crobial resistance is important for the survival of bacteria

under antimicrobial pressure (Egorov et al. 2018).

Plasmid conjugation frequencies in E. coli are presented

in Table 2. A significant interaction was observed between

the type of litter and the presence of antimicrobial resi-

dues on the frequency of plasmid conjugation in E. coli.

In the presence of AGPs (MON, LCM and VIR), higher

conjugation frequencies were observed in wood shavings

compared with sugarcane bagasse. This was not observed

in non-treated litter (CON) or in the litter samples con-

taining sanguinarine (SANG).

Among all the treatments containing AGPs, the highest

plasmid conjugation frequencies were observed for vir-

giniamycin in wood shavings. Considering the sugarcane

bagasse in particular, the highest conjugation frequencies

in E. coli were seen in litter containing monensin (MON)

(P < 0�01). Both virginiamycin and monensin compounds

were frequently used as AGPs although their use is pro-

hibited in some countries (Kelly et al. 2004; Chapman

et al. 2010; Danzeisen et al. 2011).

Virginiamycin is still one of the mainly used AGPs,

even in countries experiencing a reduction in the use of

antibiotic feed additives in animal production. (Thi-

bodeau et al. 2008). Although the use of this AGP has

been associated with increased antimicrobial resistance in

avian bacteria (Singer and Hofacre 2006; Furtula et al.

2010), there is still a lack of knowledge on its effects on

plasmid conjugation or other mechanisms of horizontal

gene transfer. Interestingly, Mathers et al. (2004) reported

inhibition of the transfer of a multiresistance-conferring

plasmid in bacteria exposed to different AGPs at concen-

trations normally added to animal feed. The authors also

reported a positive correlation between drug concentra-

tion and its inhibitory effects on plasmid conjugation.

In our study, lower conjugation frequencies (P > 0�01)
were observed among E. coli in sugarcane bagasse litter

containing sanguinarine (SANG) compared with all other

treatments (Table 2). Quaternary benzophenanthridine

alkaloids, which includes sanguinarine, have been used as

an alternative to antibiotics in animal production to pre-

vent pathogenic bacteria (Vieira et al. 2008a, 2008b; El-

Sheikh et al. 2018). These compounds can modulate the

microbiota of broiler chickens (Lemos et al. 2020) and

present broad antimicrobial, anti-inflammatory, antifun-

gal and anti-biofilm activities that have been studied since

the 1980s (Lenfeld et al. 1981; Godowski 1989; Obiang-

Obounou et al. 2011; Qian et al. 2020). Although san-

guinarine has been previously reported to reduce plasmid

conjugation frequency in bacteria (Hausner and Wuertz

1999; Watnick and Kolter 2000; Ghigo 2001), the molecu-

lar mechanisms are unknown.

It is plausible to consider that resistant bacteria from

the animal gut follow the same dissemination routes than

the antibiotics shed in the excreta in a given environment

(Baquero et al. 2008). Therefore, the presence of bacteria,

ARGs, and residual concentrations of antibiotics, as dri-

vers for selective pressure, can lead to the emergence of

antimicrobial drug resistance in a bacterial population

through horizontal gene transfer mechanisms (Berglund

2015). In the case of poultry litter, this process could be

facilitated by the presence of appropriate conditions for

bacteria survival and multiplication, such as temperature,

humidity and organic matter. While the concept of

Table 2 Logarithmic plasmid conjugation frequency between Escherichia coli H2332 (donor) and E. coli J62 (recipient) in two plain poultry litter

materials (sugarcane bagasse and wood shavings) added with sanguinarine or antimicrobial growth promoters at low concentrations (10% of the

recommended use on animal feed)

Treatment

Litter material (l)

Treatment meansSugarcane bagasse Wood shavings

CON �4�40725 � 0�075ªB† �4�53309 � 0�066ªA �4�470
SANG �4�59788 � 0�123ªA �4�70714 � 0�220aA �4�653
MON �3�45755 � 0�133ªD �3�24223 � 0�181bC �3�350
LCM �3�85377 � 0�088ªC �3�54237 � 0�192bB �3�698
VIR �3�49785 � 0�167aD �3�19562 � 0�143bC �3�347
Litter means �3�963 �3�844
P-value‡ T < 0�0001 L < 0�0001 T * L < 0�0001

CON: control; SANG: sanguinarine (30 mg g�1); MON: monensin (10 mg g�1); LCM: lincomycin (1 mg g�1); VIR: virginiamycin (1 mg g�1); CFU:

coony forming units; ANOVA, analysis of variance.

The conjugation frequency was determined by the ratio between the logarithmic counts (Log CFU g�1) of transconjugants and recipients.

Means followed by different capital letters in the column are different, and different lowercase letters in the row are different by the two-way

ANOVA with a Bonferroni multiple comparison test at 1% probability.

†Each value represents mean � standard deviation of 15 observations.

‡T = Treatment; L = Litter material; T * L = Interaction between main factors (treatment and litter material).
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reducing horizontal gene transfer among bacteria in a

given environment in order to effectively mitigate the dis-

semination of antimicrobial resistance seems to be plausi-

ble, as supported by this in vitro study, this still needs to

be confirmed in vivo. Therefore, our findings should be

interpreted carefully before conclusions could be made at

the animal production level. For instance, a previous

investigation on lake water reported no increase in the

concentrations of genes conferring antimicrobial resis-

tence even after 1000-fold increase in the amount of

antibiotics commonly detected in wastewater (Berglund

et al. 2014).

In summary, this study revealed that subinhibitory con-

centrations of commonly used AGPs in poultry produc-

tion can favour the conjugation of plasmids containing

ARGs among E. coli and that the litter may impact on

conjugation as well. These findings raise questions

whether a similar phenomenon could be observed for

antimicrobials other than AGPs, such as drugs used for

therapeutic and methaphylactic purposes in poultry pro-

duction. Therefore, further knowledge on how these resi-

dues could putatively impact the dissemination of

antimicrobial resistance in the animal raising environment

would be important for improving antimicrobial steward-

ship programmes in veterinary medicine.

Materials and methods

Study design

The experiment was performed according to a completely

randomized design using a 2 9 5 factorial arrangement

including two types of litter material (wood shavings and

sugarcane bagasse) and five treatments with 15 repetitions

each, including non-treated litter (CON) and litter treated

with herbal alkaloid sanguinarine (30 mg g�1, SANG),

monensin (10 mg g�1, MON), lincomycin (1 mg g�1,

LCM) or virginiamycin (1 mg g�1, VIR).

Considering that 10–60% of the ingested AGPs is shed

in the excreta, the concentrations of both the AGPs and

the sanguinarine in the litter were calculated to represent

10% of their respective recommended concentrations, i.e.,

the minimum excreted amount under commercial field

conditions.

Bacterial strains and growth conditions

Escherichia coli H2332 harbouring the plasmid pH2332-166

was used as the donor strain. This IncFII-FIB-plasmid har-

bours genes conferring resistance against amphenicols

(catA1), aminoglycosides (aadA1b; strAB), b-lactams (blaTEM-

1), macrolides (mph-B), tetracyclines (tetR; tetA), trimetho-

prim (dfrA1) and sulphonamides (sul1; sul2) (Wang et al.

2014). The rifampicin/nalidixic acid-resistant non-lactose fer-

menting E. coli J62 strain was used as recipient (Niero et al.

2018). Both bacteria strains were cultured in 5 ml of Luria-

Bertani broth under orbital incubation at 37°C for 24 h. They

were individually transferred to buffered peptone water

(10 ml) and bacteria concentration was adjusted to 1 9 107

and 3 9 107 colony froming units (CFU) ml�1 for the donor

and the recipient strains, respectively.

Plasmid conjugation experiment

In each treatment, 10 g of litter was placed into a sterile

plastic bag, and 10 ml of peptone water containing the

recipient strain (3 9 107 CFU ml�1) was added. After

1 h at room temperature, liquid excess was withdrawn

and 10 ml of peptone water with the donor strain

(1 9 107 CFU ml�1) was added. After 1 h at room tem-

perature, liquid excess was withdrawn and samples were

cultured aerobically at 25°C for 24 h.

Conjugation frequencies

After incubation, bag contents were homogenized in 0�9%
sterile saline (90 ml) and then serially diluted 1:9 (v:v) until

10�9. Aliquots (20 µl) from each dilution were plated in trip-

licates onto two types of MacConkey agar dishes: one supple-

mented with 70 µg of nalidixic acid (NAL) + 40 µg of

ceftriaxone (CRO) (for transconjugant bacteria recovery);

and one supplemented with 70 µg of NAL (for recovering

total bacteria: recipient+transconjugant). The dishes were

incubated at 37°C for 24 h. The typical colonies of non-

lactose fermenting E.coli were enumerated and logarithmically

transformed (CFU g�1). The conjugation frequency was

obtained by dividing the number of transconjugants (Log

CFU g�1) by the number of total recipients (Log CFU g�1).

Data analyses

Logarithmically transformed counts were evaluated for nor-

mal distribution by means of Shapiro–Wilks normality test.

Means were compared within each type of litter material

(wood shavings and sugarcane bagasse) and between the two

types of littler materials within each treatment according to a

two-way analysis of variance with a Bonferroni multiple com-

parison test (P < 0�05). Statistical analyses were performed in

GraphPad Prism 8 software.
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