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Abstract: Foodborne pathogens significantly impact public health globally. Excessive antimicrobial
use plays a significant role in the development of the public health crisis of antibiotic resistance.
Here, we determined the prevalence and antimicrobial resistance profiles of E. coli O157, Salmonella,
L. monocytogenes, and Campylobacter isolated between 2016 and 2020 from small scale agricultural
settings that were amended with dairy cattle or poultry manure in Northeastern Ohio. The total
prevalence of the foodborne pathogens was 19.3%: Campylobacter 8%, Listeria monocytogenes 7.9%,
Escherichia coli O157 1.8%, and Salmonella 1.5%. The prevalence was significantly higher in dairy
cattle (87.7%) compared to poultry (12.2%) manure amended farms. Furthermore, the prevalence
was higher in manure samples (84%) compared to soil samples (15.9%; p < 0.05). Multiple drug
resistance was observed in 73%, 77%, 100%, and 57.3% of E. coli O157, Salmonella, L. monocytogenes,
and Campylobacter isolates recovered, respectively. The most frequently observed resistance genes
were mphA, aadA, and aphA1 in E. coli O157; blaTEM, tet(B), and strA in Salmonella; penA, ampC, lde,
ermB, tet(O), and aadB in L. monocytogenes and blaOXA-61, tet(O), and aadE in Campylobacter. Our
results highlight the critical need to address the dissemination of foodborne pathogens and antibiotic
resistance in agricultural settings.

Keywords: Campylobacter; Salmonella; L. monocytogenes; E. coli O157; foodborne pathogens; antimicrobial
resistance; diversity; phenotypic and genotypic; correlation

1. Introduction

Foodborne illnesses have a major public health impact in the USA and around the
world. They affect approximately one in six Americans annually, leading to approx-
imately 128,000 hospitalizations and 3000 deaths [1]. The most common foodborne
pathogens include Campylobacter, Salmonella, Escherichia coli O157, Listeria monocytogenes,
and Clostridium perfringens [2,3]. Campylobacter, Salmonella, E. coli O157, and L. monocytogenes
result in about 37,000 hospitalizations and 750 deaths annually [1]. In the USA, the es-
timated annual cost of foodborne illness is about $90 billion per year [3,4]. For exam-
ple, Salmonella spp. alone results in about one million infections and 400 deaths an-
nually with a total of $4.4 billion in medical costs and lost productivity [3,5,6]. How-
ever, L. monocytogens infection causes the highest mortality rate compared to other food-
borne pathogens with a case fatality rate of 20–30% [6] with an annual cost of about
$2.6 billion [6,7]. Furthermore, E. coli O157:H7 causes approximately 265,000 illnesses with
an estimated cost of $405 million [8,9]. Campylobacter infections cause 1.3 million illnesses,
13,240 hospitalizations with an estimated cost of $1.56 billion per year [5]. Foodborne
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pathogens cause a self-limiting gastroenteritis and do not require the use of antimicrobials,
except in severe cases such as persistent enteritis, bacteremia, and in immunocompromised
individuals [1,10]. However, in severe cases, antimicrobial treatments have become lim-
ited due to the rise of antimicrobial resistance among these foodborne pathogens, which
complicate their treatment and have become a significant public health concern [2,11]. In
the USA between 2009–2015, 5760 foodborne outbreaks were reported and the implicated
bacteria were resistant to at least one antibiotic [12,13]. Out of these outbreaks, 896 were
caused by Salmonella, 191 caused by Shiga toxin producing E. coli (STEC), 155 caused by
Campylobacter, and 35 caused by L. monocytogenes [13]. Most of these outbreaks were associ-
ated with dairy and poultry products and vegetables [12,13]. Therefore, the USA Centers
for Disease Control and Prevention (CDC) has classified drug-resistant Campylobacter and
drug-resistant non-typhoidal Salmonella as serious threats to human health [2,14].

The number of antibiotic resistant bacteria isolated from humans, animals, and the
environment has increased globally over the last two decades due to the overuse and
misuse of antibiotics [15,16]. Currently, antibiotic resistance infections result in about
700,000 deaths worldwide. However, by 2050, if no action is taken to reduce the spread of
antimicrobial resistance, the estimated number of deaths will increase by up to 10 million
with more than USA $100 trillion in economic losses [17]. In the USA alone, more than
2 million infections occur due to antibiotic resistant bacteria with $20 billion in economic
losses each year [17,18]. Antibiotics are often used in food animals as therapeutics or pro-
phylactics, especially in poultry [19–24]. Additionally, several environmental components
such as soil and water can act as reservoirs of antimicrobial resistance genes (ARGs) [25–27].
The agricultural soil may naturally contain pathogenic bacteria or receive them during soil
amendment using animal manure [28]. Soil amendment with animal manure increases
crop yield, but it can potentially increase the spread of foodborne pathogens and ARGs in
the environment [29–31]. Therefore, the USA Food and Drug Administration has recently
limited the use of antimicrobials on farms in the USA due to the growing impact of antibi-
otic resistance in clinical practice and to reduce the selection pressure on the emergence
of resistance bacteria [32,33]. Here, we investigated the prevalence and phenotypic and
genotypic antimicrobial resistance profiles of E. coli O157, Salmonella, L. monocytogenes, and
Campylobacter isolated between 2016 and 2020 from small scale agricultural settings that
were amended with dairy or poultry manure in Northeastern Ohio, USA.

2. Material and Methods
2.1. Study Area and Sample Collection

A total of 844 longitudinal manure and soil samples were collected monthly between
October 2016 and October 2020 from eleven farms; five farms were amended with poultry
manure, three farms were amended with dairy manure, and three farms were amended
with both dairy and poultry manure. Samples were collected from a small-scale agricultural
setting located in Northeastern Ohio (USA). Farms were selected based on their availability
for longitudinal sampling throughout the study period and the types of manure applied
(poultry or dairy). The dairy manure was obtained from open dairy heifers housed on
a bedded pack during the winter and raised on pasture in the summer. The poultry manure
came from boiler houses from various stages of composting. A total of 379 manure samples
and 465 soil samples were collected. Six to eight fresh manure pats were collected from
each farm and pooled to make one manure sample, whereas three manure samples were
collected from poultry storage piles from each farm and pooled to make one manure
sample. Similarly, soil samples were collected from three random sites per each field and
pooled to make one soil sample. Samples were collected aseptically into Nasco Whirl-Pak™
(Fisher Scientific, Waltham, MA, USA) and stored in a cool box before transportation to
the laboratory for further analyses. The numbers of the collected samples each year, their
source, and the amendment type are listed in Table 1.
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Table 1. Total number of samples collected between October 2016 and October 2020.

Year No. of Farms Total No of Samples Farm Amendment Type Sample Type

Dairy Manure Poultry Manure Manure Soil

2016/2017 11 252 131 121 112 140
2018 11 262 142 120 120 142
2019 11 221 113 108 95 126
2020 10 109 55 54 52 57

Total 844 441 403 379 465

2.2. Bacterial Isolation, Enrichment, and Growth Conditions

Twenty-five grams of the samples (soil or manure) were suspended in 225 mL phos-
phate buffered saline (PBS; Fisher Scientific, Waltham, MA, USA) and mixed by shaking to
form slurry. One mL of the slurry was then ten-fold serially diluted using PBS, and 100 µL
of each serial dilution was plated onto modified charcoal cefoperazone deoxycholate agar
(mCCDA; Fisher Scientific, Waltham, MA, USA), RAPID’ L. mono (Bio Rad, Hercules, CA,
USA), sorbitol MacConkey agar plates containing cefixine and tellurite (SMACct; Becton,
Dickinson; BD, San Jose, CA, USA), and xylose lysine tergitol-4 agar (XLT-4; Bio Rad,
Hercules, CA, USA) plates for the direct isolation of Campylobacter, L. monocytogenes, E. coli
O157, and Salmonella, respectively. Samples that did not show any bacterial growth due to
direct plating were subjected to enrichment using pathogen specific media [34–38].

The enrichment and isolation of E. coli O157 was performed as previously described [34].
Briefly, 10 mL of the slurry was enriched in 90 mL of buffered peptone water (BPW;
Thermo Scientific, Waltham, MA, USA) and incubated at 42 ◦C for 18–24 h. Automated
immunomagnetic separation (AIMS) was performed on BPW enriched samples using anti-
O157 specific immunomagnetic beads (Invitrogen, Waltham, MA, USA). The recovered
beads were plated on SMACct and incubated at 37 ◦C for 18–24 h. An E. coli O157 Latex
test (Oxoid Ltd., Cambridge, UK) was used to confirm the presence of E. coli O157. The
isolated colonies were preserved at −80 ◦C in brain heart infusion broth (BHI; BD Difco,
Franklin Lakes, NJ, USA) containing 30% glycerol (v/v) for further analysis.

To isolate L. monocytogenes, 10 mL of the slurry was added to 90 mL universal pre-
enrichment broth (UPB; Oxoid Ltd., Cambridge, UK) and incubated at 35 ◦C for 24 h.
One mL of the enriched culture was transferred to nine mL of Fraser broth (Oxoid Ltd.,
Cambridge, UK) and incubated at 35 ◦C for 24 h. A loopful (10 µL) of darkened Fraser
broth was streaked on PALCAM plates (Neogen, Lansing, MI, USA) and incubated at
35 ◦C for 48 h. The grown colonies were subcultured on Rapid’ L. mono plate (Neogen,
Lansing, MI, USA) and incubated at 37 ◦C for 24 h. Blue colonies without a yellow halo
were collected and preserved at −80 ◦C in BHI broth containing 30% glycerol (v/v) for
further analysis [35,36].

For Salmonella isolation, 10 mL of the slurry was enriched in 90 mL tetrathionate broth
(Oxoid Ltd., Cambridge, UK) and incubated at 37 ◦C for 24 h. One mL of the grown culture
was then transferred to ten mL of Rappaport-Vassiliadis broth (RV; Oxoid Ltd., Cambridge,
UK) and incubated at 37 ◦C for 24 h. A loopful of bacteria grown in RV were plated on
XLT-4 plates and incubated at 37 ◦C for 24 h [37]. Black suspect colonies were preserved at
−80 ◦C in BHI broth containing 30% glycerol (v/v) for further analysis.

To isolate Campylobacter spp., 1 mL of manure or soil slurry was suspended in 9 mL of
Preston enrichment broth containing Campylobacter growth supplements (CM067, SR048,
SR117, and SR232; Oxoid Ltd., Cambridge, UK) [38]. The suspensions were incubated
under microaerobic conditions (5% O2, 10% CO2, and 85% N2) at 42 ◦C for 48 h. After
enrichment, 100 µL was plated on mCCDA containing a selective supplement (SR0155;
Oxoid Ltd., Cambridge, UK) and incubated under microaerobic conditions at 42 ◦C for 48 h.
The isolated colonies from mCCDA plate were then subcultured onto Mueller–Hinton
(MH) agar containing a selective supplement (SR0117; Oxoid Ltd., Cambridge, UK) and
incubated at 42 ◦C for 48 h under microaerobic conditions [39–41]. The grown Campylobacter
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cultures were frozen at −80 ◦C in MH broth supplemented with 30% glycerol (v/v) until
further use.

2.3. DNA Extraction and PCR Analysis for Bacterial Species Identification

Bacterial DNA was extracted using the boiling method [39]. Briefly, a half loop from
bacterial cultures were suspended in 100 µL of sterile DNase-free water, heated at 95 ◦C
for 10 min, cooled, and centrifuged at 4000× g for 10 min. The supernatants containing
the nucleic acids were collected in new tubes and stored at −20 ◦C. In cases where no PCR
products were detected, template DNA was prepared using a MasterPure™ Complete DNA
and RNA Purification Kit (Epicenter, Madison, WI, USA) according to the manufacturer’s
instructions. Confirmation of bacterial spp. for E. coli O157, Salmonella L. monocytogenes, and
Campylobacter was performed using a multiplex-PCR assay (mPCR) [39,42–44]. PCR prod-
ucts were visualized using gel-electrophoresis on a 2% agarose gel containing 0.5 µg/mL
ethidium bromide. The mPCR conditions, target gene, primers sequence, and amplicon
size are listed in Table S1.

2.4. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing was carried out using the broth microdilution
method [45]. E. coli O157 and Salmonella isolates were tested for their susceptibility to amino-
glycosides: kanamycin (Kan), streptomycin (Str), and gentamicin (Gen); β–lactam combina-
tion agents: amoxicillin-clavulanic acid (Amo); cephems: cefoxitin (Cefo) and ceftriaxone
(Ceft); folate pathway antagonists: sulfisoxazole (Sul) and trimethoprim- sulfamethoxazole
(Tri); macrolides: azithromycin (Azi); penems: meropenem (Mer); penicillin: ampicillin
(Amp); phenicols: chloramphenicol (Chl); quinolones: ciprofloxacin (Cip), nalidixic acid
(Nal); tetracyclines: tetracycline (Tet); and polymyxins: colistin (Col) (Sigma-Aldrich,
St. Louis, MO, USA). L. monocytogenes isolates were screened for susceptibility to amino-
glycosides: kanamycin (Kan), streptomycin (Str), and gentamicin (Gen); cephems: cefoxitin
(Cefo) and ceftriaxone (Ceft); folate pathway antagonists: trimethoprim- sulfamethoxazole
(Tri); macrolides: azithromycin (Azi), erythromycin (Ery); penems: meropenem (Mer);
penicillin: ampicillin (Amp) and penicillin G (Pen); rifamycins: rifampicin (Rif); phenicols:
chloramphenicol (Chl); quinolones: ciprofloxacin (Cip); nalidixic acid (Nal); tetracyclines:
tetracycline (Tet); nitrofuran: nitrofurantoin (Nit); oxazolidinone: linezolid (Lin); fluoro-
quinolone: levofloxacin (Lev); lincomycin: clindamycin (Clin); and glycopeptide: van-
comycin (Van). Campylobacter isolates were screened for susceptibility to aminoglycosides:
kanamycin (Kan), streptomycin (Str), and gentamicin (Gen); macrolides: azithromycin (Azi)
and erythromycin (Ery); penicillin: ampicillin (Amp) and penicillin G (Pen); phenicols:
chloramphenicol (Chl); quinolones: ciprofloxacin (Cip), nalidixic acid (Nal); tetracyclines:
tetracycline (Tet); lincomycin: clindamycin (Cli); ketolides: telithromycin (Tel); and am-
phenicol: florfenicol (Flo). These antimicrobials are representatives of the drugs used for
humans and in the animal industry and were chosen according to the National Antimicro-
bial Resistance Monitoring System (NARMS) records [46].

Briefly, E. coli O157 and Salmonella cultures were suspended in LB (Luria-Bertani)
broth while L. monocytogenes cultures were suspended in UPB broth and Campylobacter
cultures were suspended in MH broth to achieve an optical density (OD600) of 0.05. One
hundred microliters of a suspension were added to each well of the 96-well plate containing
two-fold serial dilutions of the antimicrobial agents. Positive and negative control wells
contained bacterial suspensions without antimicrobials, and sterile broth containing each of
the antimicrobials, respectively. The E. coli O157 and Salmonella plates were then incubated
under aerobic conditions at 37 ◦C for 24 h [47], while the plates for L. monocytogenes were
incubated for 48 h under aerobic condition at 37 ◦C and the Campylobacter plates were
incubated at 42 ◦C under microaerobic condition [47–49]. The plates were assessed visually
and using a spectrophotometer (Tecan Group Ltd., San Jose, CA, USA) to determine growth
inhibition. Minimum inhibitory concentration (MIC) values were defined as the lowest
concentration of an antimicrobial agent that produced no visible growth. The isolates that
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possessed resistance to three or more classes of antimicrobials were considered multi-drug
resistant (MDR) [50]. The test was performed in accordance with the recommendations
of the Clinical Laboratory Standards Institute (CLSI) criteria by using the available CLSI
breakpoint interpretive criteria (Table S2).

2.5. Detection of Antibiotic Resistance Genes (ARGs)

The most prevalent ARGs for each antibiotic were selected and screened for their
presence in the foodborne pathogens. E. coli O157 isolates were screened for six ARGs:
tetracycline resistant gene tet(A), aminoglycoside acetyltransferase gene aac (3)-IV, strepto-
mycin adenyl transferase gene aadA, aminoglycoside 3′-phosphotransferase gene aphA1,
sulfonamide resistant gene sulII, and macrolide resistance gene mphA. Salmonella isolates
were screened for six ARGs: beta-lactamase gene bla TEM, streptomycin resistant gene
strA, tetracycline resistant gene tet (B), aminoglycoside acetyltransferase gene aac (3)-Iva,
sulfonamide resistant gene sulII, and macrolide resistant gene mphA. L. monocytogenes iso-
lates were screened for nine ARGs: ampicillin resistant gene ampC, ciprofloxacin resistant
gene lde, erythromycin resistant gene ermB, tetracycline resistant gene tet(O), gentam-
icin resistant gene aadB, penicillin G resistant gene penA, cefoxitin resistance gene cfxA,
macrolide resistant gene mefA, and sulfonamide resistant gene sulI. Campylobacter isolates
were screened for ampicillin resistant gene blaOXA-61, streptomycin resistant gene aadE,
tetracycline resistant gene tet(O), and gentamycin resistant gene aph-3-1. Amplification
was performed in a 25 µL reaction volume containing 12.5 µL of GoTaq Green Master Mix
(2X; 2.5 units) (Promega, Madison, WI, USA), 3 µL of template DNA, and 0.2 µM of each
forward and reverse primer. The PCR was performed with 3 min of initial denaturation
at 95 ◦C, followed by 35 cycles of denaturation at 95 ◦C for 1 min, annealing at optimal
annealing temperature for 45 s, extension at 72 ◦C for 1 min, and final extension at 72 ◦C for
5 min. Primer sequence, expected amplicon size, and annealing temperatures are described
in Table S3. Nuclease-free water was used as a negative control. PCR products were
visualized on a 2% agarose gel containing 0.5 µg/mL ethidium bromide under UV light.

2.6. Statistical Analysis

Statistical analysis was performed in IBM SPSS 26.0 using one-way analysis of vari-
ance (ANOVA) followed by Tukey’s posttest. Student’s t-test and the chi-square test were
used for pairwise comparisons of differences in the resistance rates for each antimicrobial
agent between poultry and dairy manure amended farms. A p-value of <0.05 was consid-
ered statistically significant difference. Linear regression analysis was used for the trend
analysis of the prevalence and antimicrobial resistance during the study period. JMP Pro
15 was used to plot heatmap representation with dendrogram of each foodborne pathogen.
Principal component analysis (PCA) was used to visualize the distribution of phenotypic
and genotypic resistance. The statistical analysis of the correlation between phenotypic
and genotypic resistance was performed in the vegan package on R studio (SAS institute
Inc., Cary, NC, USA).

3. Results
3.1. Prevalence and Distribution of Campylobacter, E. coli O157, Salmonella, and L. monocytogenes

A total of 19.3% (163 of 844) of the collected samples were positive for at least one
of the foodborne pathogens. Out of these, 82.2% (134 of 163) of samples had a single
pathogen, while 17.8% (29 of 163) of samples had more than one pathogen. Notably, the
total prevalence of Campylobacter (8%; 68 of 844) and L. monocytogenes (7.9%; 67 of 844)
was higher than E. coli O157 (1.8%; 15 of 844) and Salmonella (1.5%; 13 of 844). However,
93.1% (27 of 29 isolates) had contamination with different pathogens; L. monocytogenes +
Campylobacter (44.8%; 13 of 29 isolates), Campylobacter + Salmonella (13.7%; 4 of 29 isolates),
Campylobacter + E. coli O157 (10.3%; 3 of 29 isolates), L. monocytogenes + Salmonella (6.8%;
2 of 29 isolates), L. monocytogenes + E. coli O157 (13.7%; 4 of 29 isolates), E. coli O157 +
Salmonella (3.4%; 1 of 29 isolates), and Salmonella + L. monocytogenes + Campylobacter (6.8%;
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2 of 29 isolates). None of the samples were positive for all four tested foodborne pathogens.
Notably, the prevalence of the foodborne pathogens had not increased from 2016 to 2020
except for Campylobacter, which showed significant increase throughout the study years
(R of 0.9; p < 0.05; Figure 1). This increase might be attributed to climate changes, rainfall,
and soil properties [51–53]. Moreover, out of 67 L. monocytogenes isolates recovered, 5.9%
(4 of 67) were 1/2a serotype, 26.8% (18 of 67) were 1/2b serotype, 19.4% (13 of 67) were 4b
serotype, and the remaining 47.7% (32 of 67) were untypable.
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Figure 1. Prevalence of foodborne pathogens in dairy cattle and poultry manure amended farms between 2016 and 2020.

Notably, the prevalence of the foodborne pathogens was significantly higher in dairy
cattle (87.7%) compared to poultry manure amended farms (12.3%; p < 0.05; Table 2). In
dairy cattle manure amended farms, Campylobacter (14.9%) was the most prevalent com-
pared to L. monocytogenes (13.1%), E. coli O157 (2.9%), and Salmonella (1.4%), whereas in
poultry manure amended farms, L. monocytogenes (2.2%) was the most prevalent com-
pared to Salmonella (1.7%) and Campylobacter and E. coli O157 (0.5%). The prevalence
of all pathogens was higher in manure samples (84%) compared to soil samples (15.9%;
p < 0.05; Table 2). In manure samples, Campylobacter (17.7%) was the most prevalent than
L. monocytogenes (12.4%), Salmonella (3.2%), and E. coli O157 (2.9%), whereas in soil samples,
L. monocytogenes (4.3%) was the most observed foodborne pathogen followed by E. coli
O157 (0.9%), Salmonella, and Campylobacter (0.2%; Table 2).

Table 2. Prevalence of foodborne pathogen from different sources.

Pathogen No. of
Isolates Farm Amendment Type Sample Type

Dairy Manure (n = 441)
No. (%)

Poultry Manure (n = 403)
No. (%)

Manure (n = 379)
No. (%)

Soil (n = 465)
No. (%)

E. coli O157 15 13 (2.9) 2 (0.5) 11 (2.9) 4 (0.9)
Salmonella 13 6 (1.4) 7 (1.7) 12 (3.2) 1 (0.2)

L. monocytogenes 67 58 (13.1) 9 (2.2) 47(12.4) 20 (4.3)
Campylobacter 68 66 (14.9) 2 (0.5) 67 (17.7) 1 (0.2)

Total positive 163 143 (87.7) * 20 (12.2) 137 (84) * 26 (15.9)

* Significantly higher prevalence of foodborne pathogens (p < 0.05).
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3.2. Antimicrobial Resistance Phenotypical Profile of E. coli O157, Salmonella, L. monocytogenes
and Campylobacter

All isolates that were confirmed positive for E. coli O157, Salmonella, L. monocytogenes,
and Campylobacter were used for broth microdilution assay. Collectively, all the tested
isolates possessed resistance to at least one of the tested antimicrobials. E. coli O157,
Salmonella, and L. monocytogenes isolates possessed 100% resistance to Tri. Additionally,
E. coli O157 and Salmonella isolates showed 100% resistance to Sul, whereas Campylobacter
isolates possessed 100% resistance to Pen. Interestingly, most of the E. coli O157 isolates
were susceptible to the tested antibiotics, however, most of the L. monocytogenes isolates
were resistant to the tested antibiotics. For example, E. coli O157 isolates possessed 100%
susceptibility to Chl, Cip, Nal, Ceft, and Mer, while L. monocytogenes isolates possessed
100% resistant to Ceft, Cefo, Cli, Rif, Tri, Mer, and Azi. The antimicrobial resistance profile
of different foodborne pathogens is shown in Table 3.

Our results also showed that E. coli O157 isolates from poultry manure amended
farms were 100% resistant to Amp, Str, Gen, Sul, and Tri, whereas in dairy cattle manure
amended farms, 100% of E. coli O157 isolates were resistant to Sul and Tri (Table S4).
Interestingly, 73% (11 of 15) of the E. coli O157 isolates revealed MDR to aminoglycosides
(100%), macrolides (73%; 11 of 15), and folate antagonists (100%). Further, Salmonella
isolates recovered from poultry manure amended farms possessed 100% resistant to Gen,
Sul, Tri, and Azi, while isolates recovered from dairy cattle manure amended farms were
100% resistant to Sul and Tri (Table S5). A total of 77% (10 of 13) of the Salmonella isolates
possessed MDR to aminoglycosides (84%; 11 of 13), macrolides (77%; 10 of 13), and folate
antagonists (100%). Notably, all L. monocytogenes isolates recovered from poultry manure
amended farms were resistant to Kan, Nal, and Lev. However, more than 50% of the
L. monocytogenes isolates recovered from dairy cattle manure amended farms were resistant
to Kan, Nal, and Lev (Table S6). We also found that all L. monocytogenes isolates showed
MDR to cephems, lincomycin, antimycobacterial, folate antagonist, penem, and macrolides
with 100% resistance for each antimicrobial class. Additionally, Campylobacter isolates
recovered from poultry manure amended farms were 100% resistant to Amp, Nal, and Pen,
while isolates recovered from dairy cattle manure amended farms were 100% resistant to
Ery and Pen (Table S7). A total of 57.3% (39 of 68) of the Campylobacter isolates showed
MDR to aminoglycosides (54%; 37 of 68), tetracyclines (63%; 43 of 68), and penicillin (100%).
The resistance of the foodborne pathogens to the tested antimicrobials did not increase
throughout the study period from 2016 to 2020 (Figure S1). On the other hand, manure
samples contained more resistant isolates compared to soil samples. Details about the
antimicrobial profile of the E. coli O157, Salmonella, L. monocytogenes, and Campylobacter
isolates from manure and soil samples collected from dairy cattle and poultry manure
amended farms are shown in Tables S4–S7.

3.3. Genotypic Profile of Antimicrobial Resistance in E. coli O157, Salmonella L. monocytogenes
and Campylobacter Isolates

Phenotypically antimicrobial resistant isolates of different foodborne pathogens were
tested for the presence of the corresponding ARGs. Regardless of the type of the isolated
pathogen, more ARGs were detected in dairy cattle than poultry manure amended farms.
Our results showed that the E. coli O157 isolates contained 100% of aphA1 and mph A genes.
Further, aadA, tetA, aac (3)-IV, and Sul II genes were detected in 75% (6/8), 50% (1/2), 84%
(11/13), and 63% (7/15) of the E. coli O157 isolates, respectively. Notably, none of the
Salmonella isolates contained the Azi resistant ermB gene. However, 66% (4/6), 66% (2/3),
63% (7/11), 40% (4/10), and 15% (2/13) of Salmonella isolates contained blaTEM, tetB, strA,
aac (3)-Iva, and sul II genes, respectively (Figure S2).
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Table 3. Antimicrobial resistance profile of the foodborne pathogens.

Antimicrobial
Class Antimicrobials E. coli O157 (n = 15) Salmonella (n = 13) L. monocytogenes (n = 67) Campylobacter (n = 68)

R
No. (%)

I
No. (%)

S
No. (%)

R
No. (%)

I
No. (%)

S
No. (%)

R
No. (%)

I
No. (%)

S
No. (%)

R
No. (%)

I
No. (%)

S
No. (%)

Penicillin Amp 6 (40) 0 9 (60) 6 (46) 2 (15.3) 5 (38.4) 60 (89.5) 0 7 (10.5) 63 (97) 0 5 (3)
Pen NA NA NA NA NA NA 32 (47.7) 0 35 (52.3) 68 (100) 0 0

Phenicol Chl 0 0 15 (100) 1 (7.8) 0 12 (92.2) 42 (61.7) 8 (11.7) 17 (25) 6 (5.9) 0 62 (94.1)
Flo NA NA NA NA NA NA NA NA NA 2 (2.9) 0 66 (97)

Quinolones Cip 0 5 (33.3) 10 (66.6) 1 (7.6) 7(46) 5 (38.4) 53 (79) 1 (1.4) 13 (19.6) 4 (5.8) 0 64 (94.2)
Nal 0 0 15 (100) 7 (53.8) 1(7.8) 5 (38.4) 64 (95.5) 0 3 (4.5) 23 (33.8) 0 45 (66.2)

Aminoglycosides Kan 9 (60) 1 (6.7) 5 (33.3) 6 (46) 2 (15.3) 5 (38.4) 59 (88) 0 8 (12) 33 (48.5) 4 (5.8) 31 (45.5)
Gen 13 (86.6) 1 (6.7) 1 (6.7) 10 (76.9) 1 (7.8) 2 (15.3) 52 (77.6) 0 15 (22.3) 17 (25) 0 51 (75)
Str 8 (54) 0 7 (46) 11 (84.6) 0 2 (15.3) 66 (98.5) 1 (1.5) 0 15 (22) 12 (17.6) 41 (60.2)

Tetracyclines Tet 2 (23) 2 (13) 11 (73.3) 3 (23) 1 (7.8) 9 (69.2) 23 (34.3) 0 44 (65.6) 43 (63.2) 0 25 (36.8)
Macrolides Ery NA NA NA NA NA NA 25 (37.3) 0 42 (62.7) 67 (98.5) 0 1 (1.5)

Azi 11(73.3) 0 4 (26.6) 10 (77) 0 3 (23) 67 (100) 0 0 6 (5.9) 0 62 (94.1)
Cephems Ceft 0 0 15 (100) 1 (7.8) 1 (7.8) 11 (84.6) 67 (100) 0 0 NA NA NA

Cefo 1 (6.7) 0 14 (93.1) 1 (7.8) 1 (7.8) 11 (84.6) 67 (100) 0 0 NA NA NA
β–lactam Amo 1 (6.7) 0 14 (93.1) 1 (7.8) 0 12 (92.2) NA NA NA NA NA NA

Folate pathway
Antagonists

Tri 15 (100) 0 0 13 (100) 0 0 67 (100) 0 0 NA NA NA
Sul 15 (100) 0 0 13 (100) 0 0 NA NA NA NA NA NA

Polymyxins Col 1 (6.7) 0 14 (93.1) 2 (15.3) 0 11 (84.6) NA NA NA NA NA NA
Penem Mer 0 0 15 (100) 0 0 13 (100) 67 (100) 0 0 NA NA NA

Glycopeptide Van NA NA NA NA NA NA 45 (67) 22 (33) 0 NA NA NA
Oxazolidinone Lin NA NA NA NA NA NA 39 (58) 28 (42) 0 NA NA NA

Nitrofuran Nit NA NA NA NA NA NA 6 (8.9) 59 (86) 2 (2.9) NA NA NA
Lincomycin Cli NA NA NA NA NA NA 67 (100) 0 0 8 (11.7) 0 60 (80.8)
Rifamycins Rif NA NA NA NA NA NA 67 (100) 0 0 NA NA NA

Fluoroquinolone Lev NA NA NA NA NA NA 61 (91) 6 (9) 0 NA NA NA
Ketolides Tel NA NA NA NA NA NA NA NA NA 4 (5.8) 0 64 (94.2)

S, susceptible; I, intermediate; R, resistance; NA, not applicable. The antimicrobial resistance was determined using the broth microdilution method [45]. Results are shown as number of isolates with the
percentage given in parentheses. Amp: ampicillin, Chl: chloramphenicol, Cip: ciprofloxacin, Kan: kanamycin, Nal: nalidixic acid, Str: streptomycin, Tet: tetracycline, Gen: gentamycin, Sul: sulfisoxazole, Ceft:
ceftriaxone, Amo: amoxicillin, Cefo: cefoxitin, Azi: azithromycin, Tri: trimethoprim sulfamethoxazole, Mer: meropenem, Col: colistin, Pen: penicillin G, Ery: erythromycin, Van: vancomycin, Lin: linezolid, Nit:
nitrofurantoin, Cli: clindamycin, Rif: rifampicin, Lev: levofloxacin, Tel: telithromycin, Flo: florfenicol.
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None of the L. monocytogenes isolates contained the cefoxitin resistance gene cfxA,
macrolide resistance gene mefA, and sulfonamide resistance gene sulI. Regardless of the
source of the isolates, the most frequently detected ARGs within L. monocytogenes isolates
were lde 86.7% (46/53) followed by ampC 66% (40/60), aadB 51.9% (27/52), penA 50%
(16/32), ermB 28% (7/25), and tet(O) 8% (2/23). However, the penA gene was detected
only in dairy cattle manure amended farms. Notably, none of the Campylobacter isolates
contained the gentamycin resistance aph-3-1 gene. However, Campylobacter isolates con-
tained 90% (57/63), 79% (34/43), and 73% (11/15) of blaOXA-61, tet(O), and aadE genes,
respectively. The prevalence of ARGs was higher in the foodborne pathogens isolated
from dairy cattle compared to poultry manure amended farms. Regardless of the type of
pathogen, 88% (260 of 304) of the resistance genes were detected in dairy manure amended
farms, while 11% (36 of 304) were detected in poultry manure amended farms (p < 0.05).
The prevalence of ARGs in E. coli O157, Salmonella, L. monocytogenes, and Campylobacter
isolates recovered from different sources is shown in Figure S2.

3.4. Correlation between Phenotypic and Genotypic Resistance of the Foodborne Pathogens

Hierarchical clustering, correlation matrix analysis, and PCA were used to determine
the associations between the phenotypic and genotypic characteristics and the source of the
isolates. The hierarchical clustering showed that four E. coli O157 isolates that possessed
resistance to Kan, Gen, Sul, Tri, and Azi, susceptibility to Chl, Nal, Cef, Mer, Col, Cip, Amo,
Ceft, and Tet, and contained aphA1 and mphA genes were clustered together (Cluster A).
Further, another five isolates were clustered together and they showed resistance to Gen,
Sul, Tri, and Azi, susceptibility to Amp, Chl, Nal, Ceft, Mer, Cip, Amo, and Ceft, and
contained aac(3)-IV and mphA genes (Cluster B). Cluster A and B isolates originated from
dairy manure amended farms. On the other hand, six of the E. coli O157 isolates were
clustered together and showed resistance to Amp, Str, Sul, and Tri, susceptibility to Chl,
Nal, Ceft, Mer, and Col, and contained aadA and aac(3)-IV genes (Cluster C), however,
they originated from both poultry and dairy cattle manure amended farms (Figure 2A).
Similarly, five isolates of Salmonella were clustered together and showed resistance to Azi
and susceptibility to Cip, Kan, and Mer (Cluster A; Figure 2B). In cluster B, five isolates
possessed resistance to Kan, Str, Gen, Sul, Tri, and Azi, susceptibility to Chl, Amo, Ceft, Cefo,
Mer, and Tet, and contained the strA gene, while in cluster C, three isolates that showed
resistance to Amp, Sul, and Tri, susceptibility to Chl, Amo, Ceft, and Mer, and contained
the blaTEM gene were clustered together. Cluster A and B isolates originated from both
poultry and dairy manure amended farms, whereas in cluster C isolates originated only
from dairy manure amended farms (Figure 2B).

Notably, 22 of L. monocytogenes isolates were clustered together and possessed resis-
tance to Ceft, Cli, Rif, Tri, Mer, Azi, Cefo, Tet, and Pen (Cluster A; Figure 2C). However, in
cluster B, 34 isolates were resistant to Amp, Gen, Ceft, Cli, Rif, Tri, Mer, Azi, Cefo, and Cip,
and in cluster C, eleven isolates that were resistant to Amp and Gen, susceptible to Tet, and
contained the ampC gene were clustered together. Isolates in cluster A and B contained
variable ARGs. Cluster A, B, and C isolates originated from both poultry and dairy manure
amended farms (Figure 2C). Similarly, 32 Campylobacter isolates that were resistant to Pen,
Tet, and possessed the tet(O) gene (only one isolate did not have tet(O)) were clustered
together (Cluster A; Figure 2D). Within this cluster, eight isolates were phenotypically
and genotypically similar. All isolates in this cluster originated from dairy cattle manure
amended farms. However, in cluster B, 23 isolates were resistant to Pen and susceptible
to Chl, Cip, Tel, and Flo, whereas in cluster C, 13 isolates resistant to Amp and Pen were
clustered together. Cluster B and C isolates originated from both poultry and dairy manure
amended farms (Figure 2D).
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The correlation analysis revealed that the tested ARGs were significantly positively
correlated to their corresponding antimicrobials (p < 0.05). There was a strong positive
correlation between Azi and mph A (r = 0.8), Kan and aphA (r = 0.8), Str and aadA (r = 0.7),
and Gen and aac 3 IV (r = 0.9) in E. coli O157 isolates (Figure 3A), whereas in Salmonella
isolates, Tet and tet B were positively corelated (r = 0.9; p < 0.05; Figure 3B). Similarly,
in L. monocytogenes isolates, there were strong positive correlations between Cip and Ide
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(r = 0.9), Pen and pen A (r = 0.9), Ery and ermB (r = 0.7), Amp and ampC (r = 0.8), and Gen and
aadB (r = 0.9) (p < 0.05; Figure 3C). In Campylobacter isolates, Tet and tetO (r = 0.9) and Amp
and blaOX-61 (r = 0.9) showed significant positive correlation (Figure 3D). This indicates
that the detected resistance genes were the determinants for the observed phenotypic
resistance in these pathogens [54]. We also observed a strong positive correlation between
ARGs and their non-corresponding antimicrobials (p < 0.05). For example, there were
positive correlations between Kan and aac 3 IV (r = 0.8) and Str and aac 3 IV (r = 0.9)
in E. coli O157 isolates and Gen and strA (r = 0.8) in Salmonella isolates. The observed
correlation might be due to the action of the ARGs to antimicrobials that belong to the same
class [55]. Additionally, there was a positive correlation between ARGs and antimicrobials
from different classes. For example, Gen and mphA (r = 0.8) in E. coli O157, Gen and TetB
(r = 0.7) in Salmonella isolates, Ery and penA (r = 0.8), Gen and penA (r = 0.8), Amp and
ermB (r = 0.8), and Ery and Ide (r = 0.7) in L. monocytogenes isolates, and Amp and aadE
(r = 0.7) and Gen and aadE (r = 0.5) in Campylobacter isolates were positively correlated
(p < 0.05; Figure 3). We also found a strong correlation between different antibiotics. For
instance, a strong positive correlation was observed between Sul and Azi (r = 0.9), Str and
Gen (r = 0.8), and Str and Sul (r = 0.9) in E. coli O157 isolates, Gen and Sul (r = 0.7) and
Gen and Str (0.7) in Salmonella isolates, Cip and Gen (r = 0.9) and Pen and Tet (r = 0.9)
in L. monocytogenes isolates, and Amp and Str (r = 0.8) and Tet and Amp (r = 0.9) in
Campylobacter isolates (Figure 3). This observed strong correlation could be associated with
the occurrence of MDR in these isolates [56]. These results suggest that manure amended
farms that contain resistance pathogens could be important hotspots for the spread of
antimicrobial resistance and ARGs between isolates and can cause a significant public
health risk [57–59].
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negative correlation (1 = positive correlation, 0 = no correlation, and −1 = negative correlation). Size
and strength of the color represent numerical value of correlation coefficient.
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The PCA analysis showed that Sul, Tri, Gen, Str, and Azi resistant isolates and Amo
and Kan resistant isolates of E. coli O157 were grouped together, showing their similar trend
of occurrence within these isolates. However, Tet, Cefo, and Chl stand separately as they do
not have a similar trend of occurrence to other antibiotics (Figure 4A). In Salmonella, Sul, Tri,
Gen, Nal, and Str resistant isolates were grouped together, emphasizing their similar trends
of occurrence within these isolates (Figure 4B). Similarly, Chl and Ceft and Cip and Col were
close to each other, but the Tet resistant isolates stood separately from these antimicrobials
(Figure 4B). These PCA results were supported by the correlation analysis where Sul, Gen,
and Str strongly corelated in both E. coli O157 and Salmonella isolates (Figure 3A,B). On the
other hand, except for Nit, the other antibiotics were grouped together in L. monocytogenes
isolates (Figure 4C), suggesting that Nit does not have a similar trend of occurrence to the
other antibiotics. A similar result was also shown in the hierarchical clustering (Figure 2C).
Additionally, Ery, Amp, Gen, Tet, and Pen resistant Campylobacter isolates were close to
each other (Figure 4D), explaining their similar trend of occurrence and strong correlation
(Figure 3D). Furthermore, Nal and Str and Azi and Cli resistant isolates were also grouped
together, while Cip resistant isolates were far from the other antibiotics and possessed
a different occurrence trend compared to the other antibiotics (Figure 3D).
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Figure 4. Principal component analysis of relative abundance of phenotypic antimicrobial resistance
of (A) E. coli O157, (B) Salmonella, (C) L. monocytogenes, and (D) Campylobacter. Amp: ampicillin,
Chl: chloramphenicol, Cip: ciprofloxacin, Kan: kanamycin, Nal: nalidixic acid, Str: streptomycin,
Tet: tetracycline, Gen: gentamycin, Sul: sulfisoxazole, Ceft: ceftriaxone, Amo: amoxicillin, Cefo:
cefoxitin, Azi: azithromycin, Tri: trimethoprim sulfamethoxazole, Mer: meropenem, Col: colistin,
Pen: penicillin G, Ery: erythromycin, Van: vancomycin, Lin: linezolid, Nit: nitrofurantoin, Cli:
clindamycin, Lev: levofloxacin, Tel: telithromycin, Flo: florfenicol.
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The PCA analysis of the ARGs showed that mphA and tetA and aac (3)-IV and aphA1
in E. coli O157 isolates were grouped together (Figure 5), indicating their similar trend of
occurrence as shown in the hierarchical clustering (Figure 2A). However, tetB and strA
genes in Salmonella isolates were grouped together (Figure 5) and have strong correlation
(Figure 4B). Additionally, penA, Ide and ampC in L. monocytogenes isolates and blaOXA-
61 and tet(O) in Campylobacter isolates (Figure 5) showed similar occurrence and they
clustered together. Notably, L. monocytogenes isolates possessed strong positive correlation
(Figure 3C; p < 0.05), while Campylobacter isolates clustered together (Figure 2D).
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Figure 5. Principal component analysis of the abundance of ARGs in all foodborne pathogens:
for E. coli O157, tet(A), aac(3)-IV, aphA1, sulII, aadA, and mphA genes; for Salmonella, strA, tet (B),
sulII*, blaTEM, and aac(3)-Iva; for L. monocytogenes, ampC, lde, ermB, tet(O)*, aadB, and penA; and for
Campylobacter, blaOXA-61, aadE, and tet(O).

4. Discussion

The widespread use and misuse of antibiotics in food animal production systems has
resulted in the emergence of antibiotic resistant zoonotic bacteria that can be transmitted to
humans through the food chain [60]. Infection with antibiotic resistant bacteria negatively
impacts the public health due to an increased incidence of treatment failure and severity
of disease [61].

Interestingly, the total prevalence of foodborne pathogens in this study (19.3%) is
lower than in previous reports [62–64]. The prevalence of E. coli O157 (1.8%) and Salmonella
(1.5%) (Table 2) is lower than in previous reports conducted in California [65–67]. The total
prevalence of L. monocytogenes (7.9%; Table 2) is lower than in previous reports in Ohio,
New York and other states of the US [68–70]. Furthermore, the prevalence of Campylobacter
(8%; Table 2) is lower than the detected prevalence in Michigan [71]. In our study, E. coli
O157 was detected only in 2.9% of dairy cattle manure amended farms. The previously
detected prevalence of E. coli O157 in cattle in Ohio increased from 2.1% in 2002 [72] to
24% in 2009 [73]. However, at the global level, the estimated prevalence of E. coli O157
in cattle ranged between 0.13% and 61.8% [74]. The prevalence of Salmonella (1.4%) in
dairy cattle manure is lower than in previous reports from Texas [75]. Additionally, the
detected prevalence of Salmonella in poultry manure amended farms (1.7%) is lower than
the detected prevalence in Georgia (6%) and North Carolina (26%) [76,77]. L. monocytogenes
prevalence in poultry (2.2%) and dairy cattle (13.1%) manure amended farms (Table 2) is
lower than the detected prevalence in 2010 in Ohio, New York, and southeastern US [78–80].
The prevalence of Campylobacter among dairy cattle manure amended farms in our study
(14.9%; Table 2) is higher than the findings reported in dairy cattle feces in other localities
(northeastern, north, east, midwest, and south) in the US [68,71,81]. Interestingly, the
prevalence of Campylobacter in poultry manure amended farms (0.5%) in northeastern
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Ohio (Table 2) is lower than the detected prevalence (69%) in northwestern Ohio [82] and
Maryland [83]. Our result revealed that 1/2a serotype of L. monocytogenes isolates is less
prevalent (5.9%) than similar studies previously conducted in Ohio and other states of the
US [67,69,84]. Regardless of the detected bacteria, the variation in the prevalence estimates
might be due to differences in the husbandry and management systems, type of feed,
geographical locations, and the concentration of the farms in each location [85,86], which
can have an impact on the dissemination and transmission of pathogens. Additionally, in
poultry this variation might also be due to seasonal effects and differences in the hatchery
sources, feed composition, vaccination programs, and flock-disease status [77]. Contamina-
tion of agricultural farms with different foodborne pathogens might be attributed to using
either dairy or poultry manure amendments [87]. Other factors might contribute to the
contamination of agricultural farms by pathogens including weather parameters, rainfall,
and soil properties (hydraulic properties, texture, soil cover slope), however, these factors
were not studied in our study [51–53].

Antimicrobial resistance in foodborne pathogens isolated from different sources ap-
pears to be increasing in many countries. Previous studies have indicated that both poultry
and dairy cattle manure could be sources of antibiotic resistance bacteria [63,88,89]. In
our study, 73%, 77%, 100%, and 57.3% of E. coli O157, Salmonella, L. monocytogenes, and
Campylobacter isolates were resistant to at least one of the tested antimicrobial classes
(Table 3), respectively. These results were higher than previous studies conducted on the
same pathogens in Ohio and other states of the US [69,90–92]. The relatively high percent-
ages of resistance to the tested antimicrobials might be due to differences in antimicrobial
agents use [93]. The antimicrobial resistance in E. coli O157 isolates to aminoglycoside
(Str) is higher among dairy cattle farms than poultry farms. A previous study showed
that E. coli O157:H7 isolates from food animals have a higher rate of resistance to Amp, Str,
Kan, and Tet [94]. The usage of these classes of antimicrobials has increased more than 20%
between 2009 and 2016 [95]. The resistance of E. coli O157 isolates to Gen (84.6%) in dairy
cattle feces (Table S4) is significantly higher than the previously reported prevalence in
Ohio and the west, midwest, northeast, and southeast states of the US [96,97]. Additionally,
the prevalence of Gen and Tet resistance in Salmonella isolates is higher than previously
detected [98–100]. In the US, the resistance of Salmonella to Nal, Gen, and Cip has increased
from 2.2%, 1.3%, and 0.3% in 2004 to 2.8%, 2.0%, and 0.5% in 2013, respectively [101].
Furthermore, the resistance of Salmonella isolates to Amp, Kan, Str, and Sul is higher in our
study than previous reports from dairy feces in New York and other northeastern states of
the US [92].

E. coli O157 isolates showed 73% MDR with higher resistance to aminoglycosides,
macrolides, and folate antagonists (Table 3). These results were higher than previously
detected from Colorado and southeastern US [102,103]. Similarly, the most detected MDR
in Salmonella isolates (77%) was to aminoglycosides, macrolide, and folate antagonists
(Table 3), which is higher than previously detected from Georgia and Washington [104,105].
The MDR resistance to Amp (penicillin)/Str (aminoglycosides)/Sul (folate antagonists)
continued to increase from less than 1.5% in 1996 to 17% in 2010, 18.3% in 2011, 26.5%
in 2012, and 45.5% in 2013 [106]. The rise in antimicrobial-resistant Salmonella might be
attributed in part to the clonal spread of multidrug-resistance strains, differences in farming
practices, or to the variations in antimicrobial use guidelines [107].

Interestingly, 100% of L. monocytogenes isolates recovered from poultry manure amended
farms possessed resistance to Kan, Nal, and Lev, while 86%, 94.8%, and 89.6% of isolates
recovered from dairy cattle manure amended farms possessed resistance to Kan, Nal, and
Lev, respectively (Table S6). The resistance in L. monocytogenes isolates was significantly
higher among tested antimicrobials than previously reported resistance in dairy farms
in Tennessee [35]. Notably, 95.5% of L. monocytogenes isolates demonstrated resistance to
nalidixic acid; however, L. monocytogenes has been previously reported to have intrinsic
resistance to nalidixic acid [108].
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Campylobacter isolates showed MDR (57.3%) to aminoglycosides, tetracycline, and
penicillin (Table 3). This is higher than previous reports in North Carolina and southeastern
US [103,109]. The resistance of Campylobacter isolates to Tet (63%), Cli (11.7%), Gen (25%),
Kan (48.5%), and Str (22%) in this study is higher than the detected prevalence in the
midwestern and northeastern US [110,111]. Campylobacter isolates recovered from poultry
manure amended farms were not resistant to Tet and Cip (Table S7), however, resistance
to these two antibiotics was higher in Ohio [82]. The resistance of Campylobacter isolates
to Cip was lower than in the previous studies in the US, which increased from 12.8% in
2004 to 16.1% in 2012 [112]. Generally, the resistance trend of foodborne pathogens did not
increase from 2016 to 2020 (Figure S1) compared to other studies [107,113–116]. Our study
showed that antimicrobial resistance increased in dairy cattle more than in poultry manure
amended farms regardless of the type of pathogen. However, other studies showed that
there is increased antimicrobial resistance in both poultry and dairy cattle manure [24].
The observed trend might be due to improved animal management, change in the use of
antimicrobials, the physicochemical property of the soil, or other environmental factors
such as pH, temperature, oxygen, and the abundance of heavy metals [87,117,118].

In this study, mphA, aadA, aphA1, and tet(A) were the most frequently detected genes
within E. coli O157 isolates and blaTEM, tet(B), and strA were the most frequently detected
genes within Salmonella isolates. Furthermore, penA, ampC, lde, ermB, tet(O), and aadB were
the most frequently detected genes from L. monocytogenes isolates, and blaOXA-61, tet(O),
and aadE were the most frequently detected genes in Campylobacter isolates (Figure S2).
These results were different from the results obtained in previous studies [35,119–121].
The prevalence of aadA (75%) and tet(A) (50%) genes in E. coli O157 isolates [122] and
blaTEM (66.6%) and tet(B 66.6%) genes in Salmonella isolates (Figure S2) were lower than
the detected prevalence by McMillan et al. [123], whereas the detected prevalence of penA
(50%), ampC (66.6%), and ermB (28%) genes in L. monocytogenes isolates is higher in our
study than the detected prevalence of the same genes in fecal and environmental samples
collected from Tennessee [35,124]. Further, the prevalence of blaOXA-61 (90%) and tet(O)
(79%) in Campylobacter isolates is higher than their prevalence in fecal samples collected
from northwestern Ohio and Michigan [71,82]. Interestingly, aadA, aph(6)-I, bla, tet, tet(A),
and sulII were the most prevalent ARGs found in different foodborne pathogens in Penn-
sylvania, Maryland, New York, New Mexico, Minnesota, and California [125]. However, in
our study, aadA and blaTEM were more prevalent genes. Our results demonstrated that
animal manure are important reservoirs of ARGs; thus, it is recommended to develop
specific management practices such as aerobic and hyperthermophilic composting for farm
amendment of different types of animal manure [126–128].

Resistance of Salmonella isolates to Azi cannot be explained by ermB; similarly, resis-
tance of L. monocytogen isolates to Cefo, Azi, and Tri cannot be explained by the resistance
genes cfxA, mefA, and sulI. Further, resistance of Campylobacter isolates to Gen cannot
be explained by aph-3-1. The observed antimicrobial resistance could be due to differ-
ent resistance mechanisms such as antibiotic modification and a multidrug efflux pump,
which confers a broad spectrum of resistance [129]. Notably, specific alleles of amino-
glycoside resistance have been detected in several studies of NARMS US food animal
isolates [35,119–121,130]. Taken together, our data suggest that the E. coli O157, Salmonella,
L. monocytogenes and Campylobacter occurring in dairy cattle and poultry farms have the
genetic potential that is necessary for exhibiting resistance to antimicrobials. We found
that there was a significant positive association between ARGs and the corresponding
antimicrobials (Figure 3). However, the existence of significant correlations between ARGs
and other unrelated antimicrobials belonging to different classes was also observed. This
correlation could be due to the presence of multiple resistance genes on the same mo-
bile genetic element, as many genes can play a role in the display of similar resistance
phenotypes [131–133].
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5. Conclusions

Livestock and poultry are the most important reservoirs for foodborne pathogens.
They can transmit pathogenic bacteria to agricultural farms through manure amend-
ments. Our results revealed that the prevalence and antimicrobial resistance of E. coli O157,
Salmonella, L. monocytogenes, and Campylobacter varied among different farm types amended
with animal manure in Northeastern Ohio. Dairy cattle manure amended farms were more
frequently contaminated with the aforementioned pathogens and contained more resistant
foodborne pathogens to the tested antimicrobials compared to poultry manure amended
farms. Most of the bacterial isolates were resistant to multiple antimicrobials with geno-
typic diversity in ARGs. Therefore, there is a need to (1) track antibiotic use in different
types of food animals, (2) restrict the use of antimicrobials in veterinary practices to re-
duce the antimicrobial resistant pathogens that might enter the agricultural farms through
manure amendment and impact human health, and (3) control foodborne pathogens in
agricultural farms to limit the transmission of these pathogens to humans. Further studies
are needed to understand the impact of animal manure amendment in the food chain and
in the environment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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PCR primer used for the identification of different foodborne pathogens; Table S2: Interpretive
Criteria for Minimum Inhibitory Concentrations; Table S3: Antimicrobial resistance gene primers
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